乳房撮影において被写体がモリブデンの特性X線に与える影響

川崎医療短期大学 放射線技術科 川崎医科大学附属病院 中央放射線部*

北山	彰	真田	泰三*	黒住	晃*	板谷	道信
村中	明	荒尾	信一	天野	貴司	石井	幸志*
		日 th	啓夫	而村	明久		

(平成4年8月24日受理)

Effects of Subject on Characteristic X-rays from Molybdenum in Mammography

Akira KITAYAMA, Taizo SANADA*, Akira KUROZUMI* Michinobu ITAYA, Akira MURANAKA, Shinichi ARAO Takashi AMANO, Koushi ISHII*, Hiroo HIJI and Akihisa NISHIMURA

Department of Radiological Technology, Kawasaki College of Allied Health Professions Department of Radiology,* Kawasaki Medical School Hospital Kurashiki, Okayama 701-01, Japan (Received on Aug. 24, 1992)

Key words:乳房撮影,モリブデンターゲット,特性X線,X線スペクトル

概 要

Mo 陽極X線管を使用した乳房撮影専用装置において, Mo 付加フイルタおよび Al 付加フイルタを使用し たときのX線スペクトルを管電圧および被写体厚を変化させ測定し, 被写体が Mo の特性X線に与える影響に ついて検討した。その結果, Mo のK特性X線の発生はX線管電圧30kVp のとき有効であるが, 被写体厚がサ ルイト 5 cmあるいは水 3 cm以上であった場合には,発生した特性X線のほとんどが被写体に吸収され被写体を透 過してこないことが解った。また35kVp の管電圧を使用した場合は, 高エネルギー領域のX線の増加により全 エネルギー領域に対する特性X線領域の光子数の割合が減少するため,特性X線による写真効果は低く,またX 線被曝の面からも Al 付加フイルタの使用が有用であると考えられる。

1. はじめに

我が国の乳癌の死亡率は、これまで国際的に も低率なものの一つであったが、1980年頃から 徐々に増加し始め、現在では女性の死亡率の第 4位になっており、やがて欧米並の死亡率にな ることが予想されている。その原因に関してい ろいろ言われているが、日本人の食生活が欧米 人のそれに近くなったこと、特に脂肪摂取量の 増加が最大の原因の一つと考えられている。 乳癌の発生数の増加とともに、女性のみなら ず行政的にも乳癌への関心は高まり、1987年に は、老人保険法の事業の一つとして乳癌検診が 取り上げられた。乳癌の検診は主に触診で行わ れているが、触診だけだと小さな乳癌や触知不 能な乳癌が見落とされる恐れがある。X線によ る乳房撮影は、乳房全体を一枚のフィルムに撮 影し、乳腺病変の確定診断をすることができる ため、乳癌の検診や触診後の精密検査に最適で ある¹⁾。 乳房撮影において有用な検査を行うためには, 乳房がX線吸収値の差の少ない軟部組織から構 成されているにもかかわらず,皮膚,皮下脂肪 組織,動静脈の血管,乳腺,乳管,腫瘍や微細 な石灰化像などを適当なコントラストをもって 描出する必要がある。そのためにはわずかな組 織の違いに対してもX線吸収差が著明に生じる 光電吸収領域のエネルギーのX線を用いる必要 がある。一般には,低エネルギーX線を利用す るため,モリブデン(Mo)陽極のX線管に0.03 mm厚の Mo フィルタを組合せ,約30kVp の管 電圧で撮影する方法が推奨されており,この方 法では Mo のK特性X線(K α = 17.9, K β = 19.5keV)が有効に利用できる^{2,3}。

しかし被写体厚の厚い巨大乳房や脂肪組織の 少ない若年者乳房においては、これら Mo のK 特性X線が低エネルギーX線であるため、その 大部分が被写体に吸収され有効に利用できない 上、フィルムに到達する全X線量も減少し、感 度的に優れた増感紙フィルム系を用いてもしば しば線量不足を生じることがある。Haus等はこ のように通常より高い管電圧の使用が望まれる 状況においては、付加フィルタにアルミニウム (Al)を採用することが被曝線量低減の面から

有用であると報告している⁴。

今回我々は、陽極に Mo を使用した乳房撮影 専用装置において、管電圧および被写体厚を変 化したときのX線スペクトルを測定し、Mo 付 加フィルタ使用時のスペクトルと Al 付加フィ ルタ使用時のスペクトルを比較することにより、

Fig. 1 X-ray emission spectra from a molybdenumanode tube with 0.03mm Mo and 0.5mm Al filtration.

被写体が Mo の特性X線に与える影響について 検討した。

2. 使用機器および実験方法

2.1 使用機器
 乳房撮影装置:
 X線発生装置 東芝 MGU-10C
 X線管球 東芝 DRX-B1256EB-Mo
 付加フィルタ 0.03mm厚 Mo および
 0.5mm厚 A1
 X線スペクトルメータ:

- 検出器 EG&G ORTEC GMX-10180-P MCA SEIKO EG&G 7800-8A2 ファントム:
 - 3 cmおよび 5 cm厚ルサイトおよび水
- 2.2 実験方法

乳房撮影装置の管電圧を25,30,35kVpと変

Fig. 2 Variation of X-ray spectra emmissioned at 25.30 and 35kVp of tube voltage (dial setting).

Fig. 3 Attenuation of X-xay spectrum transmitted through 3 and 5cm lucite, and 3 and 5cm water phantom.

化させ,被写体として3cm,5cm厚のルサイト および水ファントムを用い,Mo付加フィルタ を使用したときとAl付加フィルタを使用した ときのX線スペクトルを測定した。測定一回当 りのデータ収集におけるmAs値は,被写体入 射X線の測定では1500mAs,被写体透過X線の 測定では3000mAsとした。

また、スペクトルの測定は、日本放射線技術 学会エックス線エネルギースペクトル測定指針⁵⁾ に従い、ゲルマニウム(Ge)半導体検出器を使 用して行った。測定条件は以下のとおりである。

測定器印加電圧:900V

測定距離: 310cm

Shaping Time: 6 µsec

パルス波形: Bipolar パルス

なお,エネルギーの校正は⁵⁷Coの γ線(14.4keV) を使用し,スペクトルの形状について空気によ る吸収補正は行っていない。 3.結果

管電圧30kVp において0.03mm厚 Mo 付加フ ィルタおよび0.5mm厚 Al 付加フィルタを使用し たときのX線スペクトルを Fig. 1 に示す。17.9 および19.5keV において Mo 陽極から発生し た K α および K β 特性X線が観察できる。ま た, Mo 付加フィルタ使用時のスペクトルでは 20keV 以上のエネルギー領域において Mo フ ィルタのK吸収端による選択的吸収が認められ, 低エネルギー領域でのフィルタ効果と相まって, 発生するX線は15から20keV のエネルギー領域 が強調された単色X線に近いものであることが 伺える。

Mo および Al 付加フィルタ使用時に管電圧 を25, 30, 35kVpと変化したときのX線スペク トルの変化を Fig. 2 に示す。どちらのフィルタ 使用時においても、管電圧を25から30kVp に上 昇するとK特性X線の量は約2倍以上に増加した。しかし、さらに30から35kVpに上昇しても K特性X線の量はほとんど増加せず、高エネル ギー領域のX線のみが増加することが解かる。

管電圧30kVp で Mo 付加フィルタおよび Al 付加フィルタを使用し発生したX線のスペクト ルが,3 cmおよび5 cm厚ルサイトまたは水ファ ントムにより減弱変化する様子を Fig.3 に示す。 ルサイトによる減弱よりも水による減弱の方が 大きく,3 cm厚ルサイトファントム透過後X線 スペクトルでは,入射X線スペクトルに比べ, 20keV 以上のエネルギー領域のX線量はあまり 減少しないのに対し,K特性X線の量は約2分 の1に減少した。また,同様に5 cm厚ルサイト および3 cm厚水ファントム透過後X線スペクト ルでは,入射X線スペクトルに比べ,20keV 以 上のエネルギー領域のX線量は約2分の1ある いは3分の2に減少し,K特性X線の量は約5 分の1程度に減少した。

Fig. 4 に管電圧が30kVp のときの, また Fig. 5 には管電圧が35kVp のときの付加フィルタの

違いによるファントム透過後X線スペクトルの 比較を示す。管電圧が30kVp では、AI 付加フ ィルタ使用時のX線スペクトルに比べ Mo 付加 フィルタ使用時のスペクトルは、K特性X線の 量はほぼ等しく20keV 以上のエネルギー領域の X線量は約2分の1である。また管電圧が35kVp では、30keV 以下のエネルギー領域については 管電圧が30kVp の時と同様の傾向を示したが、 30keV 以上のエネルギー領域においては、Mo のK吸収端の影響が20から30keV のエネルギー 領域での影響よりも小さいため、フィルタの違 いによるX線量の差も小さくなっている。

4.考察

組織のX線吸収差が少なくX線による被写体 コントラストのつきにくい乳房撮影では低エネ ルギーX線が使用されるが,Mo陽極X管線に Mo付加フィルタを組合せ30kVpの管電圧でX 線を発生させると,15から20keVのエネルギー 領域の低エネルギーX線が有効に発生できるこ とがX線スペクトルの測定によって確認できた。

Fig. 4 Comparison of X-ray spectra transmitted through a phantom with 0.03mm Mo and 0.5mm Al filtration at 30 kVp of tube voltage (dial setting).

Fig. 5 Comparison of X-ray spectra transmitted through a phantom with 0.03mm Mo and 0.5mm Al filtration at 35 kVp of tube voltage (dial setting).

	Mo Filter					Al Filter				
Tube Voltage		Transmission Beam				Transmission Beam				
	Incident	Lucite		Water		Incident	Lucite		Water	
(kVp)	Beam	3 cm	5 cm	$3 \mathrm{cm}$	5 cm	Beam	3 cm	$5 \mathrm{cm}$	3 cm	5 cm
25	18.27	19.19		19.44		19.51	20.67		20.61	
30	21.08	22.98	23.87	23.91	24.60	22.61	23.86	24.55	24.22	24.71
35	23.78	26.21	27.21	27.10	27.78	25.00	26.50	27.10	26.81	27.42

Table 1 Comparison of mean energy (KeV)

しかし,低エネルギーX線は被写体に吸収さ れ易いため,被写体の種類,被写体厚によって はこれらの有効に発生された低エネルギーX線 の大部分が被写体に吸収され,結果的にフィル ムに到達せず,期待される低エネルギーX線の 写真効果が認められない場合が生じる。このよ うな場合には有用であるはずのX線が無用であ るどころか有害な被曝のみに関係してくるため, 術者側の十分な注意が必要である。今回の実験 ではルサイトファントムで厚さ5 cm,水ファン トムでは厚さ3 cmで MoのK特性X線の著明な 減少が観察された。なお,ルサイトは脂肪組織 と,水は筋組織と組織等価である。

各管電圧における入射X線および各ファント ム透過後X線の平均エネルギーをスペクトルか ら計算⁶により求め Table 1に示す。入射X線 では、Mo付加フィルタ使用時には Al付加フ ィルタ使用時と比べ平均エネルギーにおいて1.2 keV 以上低く、最も MoのK特性X線が強調 される管電圧30kVp時には1.53keVの違いが生 じている。しかし、ファントム透過後X線にお いては被写体としてX線吸収の大きなファント ムを用いるに従いその平均エネルギーの差は小 さくなり、管電圧35kVp時にルサイト厚で5 cm、 水で3 cm以上の吸収体を用いると平均エネルギ ーは Al付加フィルタ使用時の方が低くなる。 このような場合にはX線被曝も考慮し Al付加 フィルタを使用するべきである。なお、我々の 実験では Mo付加フィルタ使用時に対し Al付 加フィルタ使用時には乳腺に相当する部位にお ける被曝線量は約50-63%であった⁷。

また、Mo陽極X線管から発生する MoのK

特性X線による写真効果が全く期待できないの であれば、Mo 陽極X線管に比べX線発生効率 が約2倍高いタングステン(W) 陽極X線管を 使用⁸⁾した方が,X線被曝および撮影条件的にも 有効であると推測される。

5.結論

 Mo陽極X線管に Mo 付加フイルタを組 合せ使用する場合, Mo のK特性X線を有効に 発生させるには30kVp の管電圧が適当である。

 (2) 被写体厚がルサイトで5cmあるいは水で 3cm以上である場合,被写体透過後のMoによ るK特性X線の量は極めて少ない。

(3) 35kVpの管電圧を使用する場合は、X線 被曝の面から Al 付加フイルタの使用が有用で ある。

6.文 献

- 市川平三郎監修:放射線臨床病態学,p653,通 商産業研究社,東京,(1991)
- 2) Johns HE, Cunningham JR : The Physics of Radiology, p 645, Thomas, Illinois, (1983)

- 3) 中村仁信,寺田央:X線電子写真 KIP 方式の
 基礎と臨床,pp 48-49, 蟹書房,東京,(1990)
- 4) Haus AG, Metz CE, Doi K, Bernstein J: Determination of X-ray Spectra Incident On and Transmitted Through Breast Tissue, Radiology, **124**, 511-513, (1977)
- 5) 委員会報告:エックス線エネルギースペクトル 測定指針,日放技学誌,44(9),1452-1462,(1988)
- 6)板谷道信,北山 彰,村中 明,西村明久,西 下創一:マルチチャンネルアナライザエミューレ ータ用ユーティリティソフトの開発,川崎医療短 期大学紀要,10,22-26,(1990)
- 7)黒住 晃,真田泰三,石井幸志,日地啓夫,荒 尾信一,北山 彰,板谷道信,西村明久:スクリ ーンフィルム乳房撮影におけるアルミニウムおよ びモリブデンフィルタのろ過効果と被曝線量の検 討,日放技学会岡山支部会誌,2,27-32,(1992)
- 8) Haus AG, Metz CE, Chiles JT, Rossmann K: The Effect of X-ray Spectra from Molybdenum and Tungsten Target Tubes on Image Quality in Mammography, Radiology, 118, 705 -709, (1976)